skip to main content


Search for: All records

Creators/Authors contains: "Emery, Nathan C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There is a clear demand for quantitative literacy in the life sciences, necessitating competent instructors in higher education. However, not all instructors are versed in data science skills or research-based teaching practices. We surveyed biological and environmental science instructors (n = 106) about the teaching of data science in higher education, identifying instructor needs and illuminating barriers to instruction. Our results indicate that instructors use, teach, and view data management, analysis, and visualization as important data science skills. Coding, modeling, and reproducibility were less valued by the instructors, although this differed according to institution type and career stage. The greatest barriers were instructor and student background and space in the curriculum. The instructors were most interested in training on how to teach coding and data analysis. Our study provides an important window into how data science is taught in higher education biology programs and how we can best move forward to empower instructors across disciplines. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.

     
    more » « less